Component Technologies and
Fundamental Research in Interoperability

Michael W. Mislove! Joy N. Reed!
Tulane University =~ Armstrong Atlantic State University

White Paper submitted to
Workshop for New Visions for Software Design and Productivity:
Research and Applications

Abstract

The complexity of the software infrastructure of the information age is a significant issue affecting
the security and economic viability of the U.S. Despite being of fundamental importance to the
proper functioning of so much of our everyday life, these complex systems often exhibit bugs
that cause system crashes and vulnerabilities to cyber attacks, such as Internet viruses and
worms. As ever more complex systems are adopted for use in safety critical applications, it
is important to seek methodologies that can assure these systems function as intended, and
are invulnerable to interference from hackers. Formal methods have long been viewed as a
promising approach to providing such technologies, but the complexities of industrial-strength
systems have proven too much for the homogeneous approach most often associated with formal
methods analysis. In this white paper we outline an alternative, heterogeneous approach which
seeks to apply formal methods in a component-wise fashion that combines varying approaches.
We motivate this approach with an example that includes a formal analysis of an event-based
system, combined with a similar analysis for a state-based system. Our goal is to devise a wide
range of component methods that can be applied where appropriate, and combined under the
umbrella an overall formal analysis system.

1 Introduction

Complex computer systems pervade every facet of modern life: they form the underlying infras-
tructure for our economy, they are the backbone of the US defense infrastructure, and even our
communication networks are essentially computer systems. Despite being of fundamental impor-
tance to the proper functioning of so much of our everyday life, these complex systems often exhibit
bugs that cause system crashes. In addition, unexpected vulnerabilities to cyber attacks — including
Internet viruses and worms — are a fact of life. But do they have to be? As ever more complex
systems are adopted for use in safety critical applications, from embedded systems to automated
control units, it is important to seek technologies that provide methods to assure these systems
function as intended and are invulnerable to interference from hackers.

"Work supported by the US Office of Naval Research.

The fragility of software systems is well-known, and it is due in large part to the complexity of
systems, and the ad hoc methods with which they are developed. Increasingly software systems are
designed and implemented as network-centric distributed systems, made up of components which
must interoperate in a desirable and well-understood manner. System development often requires
integrating legacy components with newly designed ones. Open systems philosophy is an accepted
mode of development, bringing with it a greater need for effective interface specifications which
support independently developed and adapted components. Middleware addresses the integration
of components by defining interface standards that allow diverse components to interoperate, but
in itself does not address the problem of achieving reliable and secure interoperation. While these
approaches all point to a need to interoperate and to support independent development, there are
few tools available that support analysis of the various components that can arise by employing
these approaches — tools that provide assurance that the individual components meet their required
specifications.

Providing methods for assuring components meet their specifications has been the traditional
province of formal methods, and, more specifically, semantics. Early semantics work from the 60s
and 70s has had a lasting and beneficial effect on classical program development. Structured pro-
gramming, invariant relationships, OO paradigms, separation of specification and implementation
— all now accepted as best-practice methods have their origins in fundamental semantics research.
This approach tends to view a system as composed of homogeneous components that are largely
similar to one another, and, in particular, that are amenable to the same analysis tools.

Component technologies, on the other hand, are heterogeneous in nature, with various com-
ponents of the overall system differing markedly from one another. Further semantics research is
required to develop a sound semantics framework for supporting component technologies. Such a
framework should specifically address integration of different techniques and formalisms, including
combining well-understood formal methods with informal best-practices. The aims of the research
are to identify and elucidate fundamental semantics issues of development methods, tools, and
domain specific interfaces and programming languages for component object interoperability. We
now outline an approach we are developing that addresses these issues.

Our approach is to take a relational view of components, with one serving as a potential plug-in
to another. Obligations are placed on both so that collectively they achieve the desired behavior.
Existing composition and integration methods often preserve safety properties, e.g., restricting
access to authorized users, but liveness properties such as freedom from deadlock are significantly
more problematic. We have identified specific behavioral, machine-checkable paradigms for client-
server models whereby components can be developed independently, in such a way that desired
liveness properties are preserved under separate refinement. Our objective is to generalize the
semantic context of these paradigms, so that we can derive fundamental relationships of disciplined
design and interface specification for distributed components. Essential to our aims is the ability
to use heterogeneous techniques when appropriate. For example, consider a subscription-based
data base. State-based techniques such as Action Systems or UML are well-suited for specifying
functional properties, while process algebraic techniques such as CSP have proved extremely useful
for specifying and analyzing security concerns.

2 Component Technologies: Fundamental Research in Interoper-
ability

One approach to managing the complexity of a large system is to break the system into modules,
an approach that also supports separation of concerns. If formal methods are to be applied in the
process, a number of options are available. A unified notation may be applied throughout, but
possibly at the expense of prohibitive complexity and the lack of optimality for individual parts of
the system. Alternatively, specifying different system aspects in different notations is attractive,
particularly for greater flexibility in incorporating COTS components which ideally come with
some guarantee of their behavior. In a distributed system it can be the case that a transaction or
service requires the interoperation of a chain of components and services collectively intended to
achieve a desired result. Various components may be selected as off-the-shelf products to plug into
a particular application. The correct operation of the application depends not only on the integrity
of its own functions, but also on its interactions with other, separately developed components.

Our approach is to develop a framework in which components of a system can be specified
and developed independently, with constraints on their interfaces which ensure that the specifi-
cation of each is satisfied. The goal is to devise appropriate languages and semantic models to
derive paradigms and best-practice techniques for component technologies, and to understand and
demonstrate the efficacy of these methods.

Concurrency and refinement Our interest is in concurrent systems, which are composed of
several component processes. We describe a framework in which components of a concurrent system
can be specified and developed independently, with constraints on their interfaces ensuring that
the specification of each is satisfied. One of the fundamental problems in concurrent systems
is avoiding deadlock, a situation in which no component can make progress. Our notion of one
component serving as a plug-in to another is that the plug-in component does not increase the
possibility of deadlock of the overall system. This view has the advantage of offering a mechanism
to specify minimal interface properties required of a plug-in component, for example, for a server
providing specified services to a client. However, in general such relational properties lack stability,
by which we mean they are preserved under refinement. Refinement is understood as a semantic
way of assuring that a specification for a given application can be maintained through further
development: a process P refines a process @ if all of the behaviors of P meet the specification
for Q. If relationally defined properties lack stability, this accepted notion of formal refinement is
fatally undermined: originally specified components might themselves always interact in a desirable
fashion, but their refinements are not guaranteed to do so. An answer lies in identifying stronger
semantic conditions which ensure compatibility of interface specifications, guaranteeing not only
that components interoperate satisfactorily, but also that they are stable. We have formulated such
conditions in machine-checkable CSP'. However, the issues transcend specific notations, and the
goal is to generalize these results in order to integrate heterogeneous specification techniques.

CSP and Specification Process algebras such as CSP provide a method for defining and ana-
lyzing concurrent processes. CSP has many applications, among them specification and verification

LCSP is a process algebra developed at the University of Oxford, and which also has a model-checker, FDR that
supports automated analysis of finite (and some infinite) CSP processes.

of systems composed of concurrently running processes. As with other process algebras, CSP is
defined by its syntax and its semantics The former includes the usual operations of concurrency
— sequential and parallel composition, nondeterministic choice and recursion — as well as some in-
dividual to CSP, most notably deterministic choice and the hiding operator. The latter is built
upon a notion of behavior of a process. This is described in terms of the atomic actions — each
representing a communication event between processes — a process can or cannot participate in. A
failure of a process P is a pair (s, X) where s is a finite string of atomic actions P can participate
in, and X is a set of atomic actions P could refuse after participating in the string s. Similarly, a
divergence of P is a string s of actions that P can participate in and after which P could diverge
— engage in infinitely many internal actions and never respond to its environment. There are a
number of healthiness conditions that must be satisfied by a set A = (F, D) of failures-divergence
pairs for A to represent a process.? Using the failures-divergences (F(P), D(P)) of a process P, we
can define a partial order on processes:

QCP & F(P)CF(@Q) & D(P)C DQ).

This means that every failure of P is also a failure of @), and every divergence of P is also a
divergence of (). This partial order on processes is sometimes called the order of nondeterminism,
since clearly () is more nondeterministic than P. In case that Q C P we also say P refines Q.

CSP also allows specifications to be encoded as failures and divergences, so we can view the
lower process () in the relation (Q C P as a specification for the process P. Thus, P satisfies @ iff
@ C P. This effectively reduces checking that a process meets its specification to checking a set
containment. The problem identified above — under what conditions can a refining component can
be substituted for another one in a complex, heterogeneous system? — is an issue of fundamental
importance for system development and ongoing operation.

Plug-in components A concurrent system consists of components running in parallel, and in
such a system, we may wish to replace one component P with another, P’. An obvious assumption
is that P C P’, but it turns out that this is not enough. Indeed, we might think that, assuming that
P C P and Q C @, then it would follow that P||@Q C P’||Q". The problem is that reasoning does
not take proper account of deadlock: there are simple examples (cf. [2]) where P’||Q’ can deadlock
when both components are deadlock free.

These ideas are explored in [2], and the result is the notion of a plug-in component. Basically,
P’ is a plug-in for P if P’ does not allow any deadlock in a parallel composition P’||@ that is not
already present in P||@Q. From the above remarks, this is a stronger relation than refinement, and
in fact, the principle motivation for [2] was to find conditions when P’||Q’ would continue to satisfy
a specification that was satisfied by P||Q, assuming that P C P’ and Q C @'. The requirement
that was found in [2] was that of plug-in, which requires not only that P’ refine P, but also that
P’ be as live as P with respect to Q. The precise definition of this last involves the failures and
divergences of P, P’ and @, and hence is tied closely to the failures-divergences model for CSP.

Order theoretic ideas The notion of a plug-in developed in [2] provides an example of how one
can reason about refining a parallel composition by refining each component, but a more general
theory also is needed. In fact, the semantics of CSP, and of many process algebras like it, are given

*For a comprehensive presentation, see [3].

by an order theory, such as the order of nondeterminism given above. There are standard results
from order theory that need to be investigated in this setting. Among these are the notions of
Galois adjunctions (cf. [1]) which generalize and make precise such notions as the refinement order.
Galois adjunctions also provide an approach to characterizing the least plug-in for a component
P of a parallel composition, Since the structure of the failures-divergences model is given by the
order of nondeterminism, the goal is to use Galois adjunctions to describe precisely the plug-ins for
a component P in a parallel composition P||Q.

Dually, Galois adjunctions also hold the promise for deriving results going the other way: how
coarse can P C P’ be so that P||Q satisfies a specification which already is satisfied by P’||Q? The
process of software development is cyclic in nature — devising components, then revising them to
suit further needs. In such a process, one needs as much flexibility as possible, and having methods
that allow one to move both ways — up or down with respect to refinement — clearly could be useful.

3 Summary

We have described work in [2] which addresses issues arising in a process algebraic setting where
one would like to replace a component of a concurrent system with another component, while still
preserving the specification of the overall system. This problem is harder than simple refinement,
because of the possibility of introducing deadlock into the system, and the result is the notion of
a plug-in for a component of a concurrent system. The arena in which this work is carried out is
basically order theoretic, and we have described potential applications of standard order theoretic
ideas that may prove useful in providing a methodology for reasoning about plug-ins, and coarser
processes that can be substituted into parallel systems without introducing deadlocks.

The work in [2] also considers Action Systems, which are state based, and how they relate to the
process algebraic setting of CSP. The arguments are still order theoretic, and the same ideas that
can be applied in the process algebraic setting also can be applied there. Thus, our overall approach
will include both state-based and event-based systems, which will provide a richer environment for
development than either setting alone can support.

Finally, the presentation at the workshop will include specific examples from areas such as
security which space limitations prevent us from describing here.

References

[1] Gierz, G., et al, “A Compendium of Continuous Lattices,” Springer-Verlag, 1980.
[2] Reed, J. N. and J. Sinclair, Refinement preserving lug-in components, preprint, 19pp.

[3] Roscoe, A. W., “The Theory and Practice of Concurrency,” Prentice Hall, 2000.

